A Differential Fault Attack Technique Against SPN Structures and the AES

G. Piret*, J.-J. Quisquater

CHES 2003 Workshop

Cologne, Germany

© UCL Crypto group - sept. 2003

1

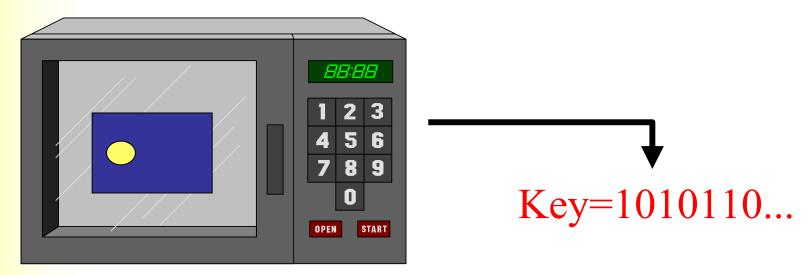
Outline of the Talk

- 1. General Context.
 - \rightarrow Introduction
 - → Cipher Structure
 - → Framework of the Attack
- 2. The Attack.
 - → Sketch of an Attack
 - \rightarrow A Practical Attack
 - → Dealing with Wrong-Located Faults
- 3. Application to the AES.
 - \rightarrow About the Linear Transform of the AES
 - \rightarrow The Basic Attack
 - → An Improved Attack
 - \rightarrow Implementation on a PC

4. Conclusion.

Introduction: Fault attacks

- First suggestion in 1997: Boneh, DeMillo, Lipton.
 Fault Attack on RSA-CRT.
- Application to block ciphers, especially DES: Biham, Shamir 1997.
- Several papers about DFA on the AES: BS02, DLV03, G03, …



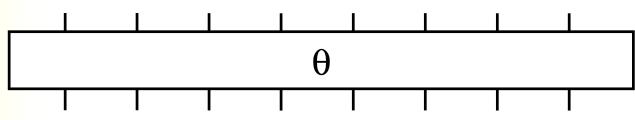
Fault Attacks : Principle

 \rightarrow Induce faults during cryptographic computation.

- By changing power supply voltage.
- By increasing frequency of the external clock.
- By applying radiations.
- → Outputs faulty results.

 \rightarrow Use them to recover the secret key stored in the card.

Framework of our Attack

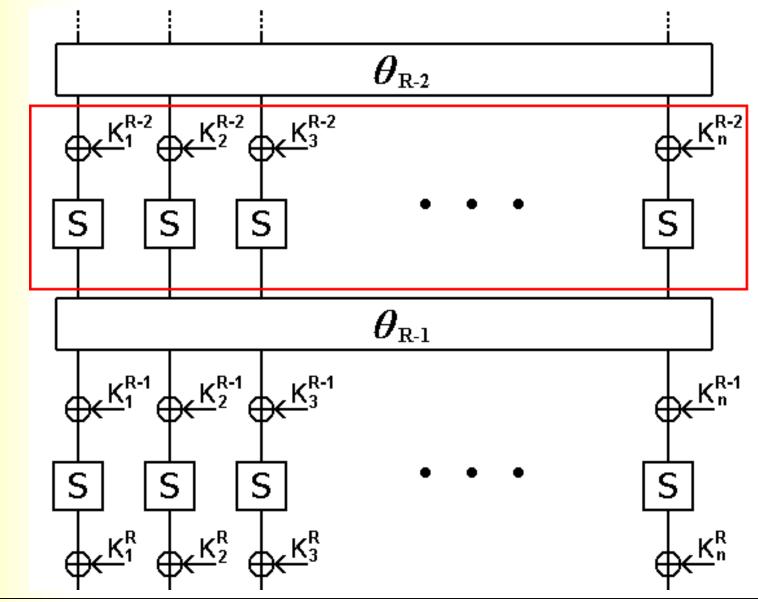

- Faults occurring on bytes.
- A faulty ciphertext results from one unique fault.
- Cipher Structure: Substitution-Permutation Network.

Countermeasure: Double encryption.



Substitution-Permutation Network (SPN)

- A round with structure σ[K^r]°θ°γ is iterated several times:
- $\sigma[K^r] = \text{Key addition} \quad \sigma[k](a) = b \Leftrightarrow b = a \oplus k$
- θ = Linear diffusion layer



γ = Non-linear layer

Fault Location

Observation

• The difference before θ_{R-1} caused by a random fault between θ_{R-2} and θ_{R-1} is of the form:

(0,...,0,α,0,...,0**)**

The number of such differences is 255n.

 There are 255n corresponding differences before the last S-box layer. They are of the form:

$$(\alpha_1,\ldots,\alpha_n)$$

Sketch of an Attack

- 1. Compute a list \mathcal{D} of the 255n possible differences after θ_{R-1} .
- Consider a plaintext *P*, the corresponding ciphertext *C*, and the faulty ciphertext *C**.
- **3.** For each possible K^R, compute the difference:

 $\gamma_R^{-1} \circ \sigma[K^R](C) \oplus \gamma_R^{-1} \circ \sigma[K^R](C^*)$

If it is in \mathcal{D} , add K^R to the list \mathcal{L} of possible candidates.

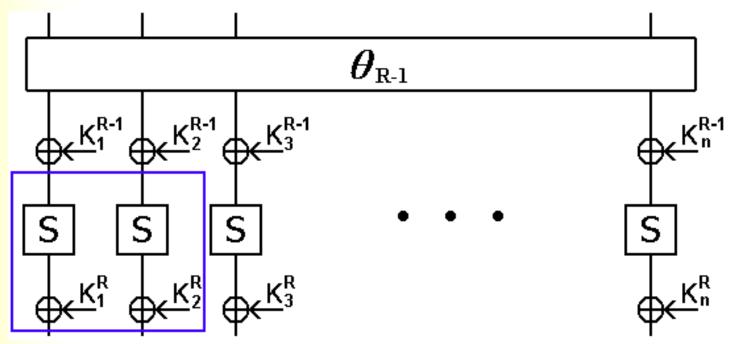
 Consider a new plaintext *P*, with corresponding ciphertexts *C* and *C**. Apply step 3 to all candidates of *L*.

Some Comments

- 2 pairs (C,C*) are enough to retrieve K^R, provided the linear layer θ is optimal.
- If K^R is not enough to retrieve the master key K, last round can be peeled off, and the attack repeated to retrieve K^{R-1}.
- Not practical: Time complexity 2⁸ⁿ.

A Practical Attack

- **1.** Compute the list \mathcal{D} of possible differences before θ_{R-1}
- 2. Consider two pairs (C,C*) and (D,D*).
- Consider the 2 left-most bytes of K^R. For each of the 2¹⁶ candidates, compute:


 $\gamma_R^{-1} \circ \sigma[\langle K_1^R, K_2^R \rangle](\langle C_1, C_2 \rangle) \oplus \gamma_R^{-1} \circ \sigma[\langle K_1^R, K_2^R \rangle](\langle C_1^*, C_2^* \rangle)$

 $\gamma_R^{-1} \circ \sigma[\langle K_1^R, K_2^R \rangle](\langle D_1, D_2 \rangle) \oplus \gamma_R^{-1} \circ \sigma[\langle K_1^R, K_2^R \rangle](\langle D_1^*, D_2^* \rangle)$

4. Compare the results with the 2 left-most bytes of the differences in \mathcal{D} . The $\langle K_1^R, K_2^R \rangle$ for which a match is found for both ciphertext pairs are stored in a list \mathcal{L} .

A Practical Attack

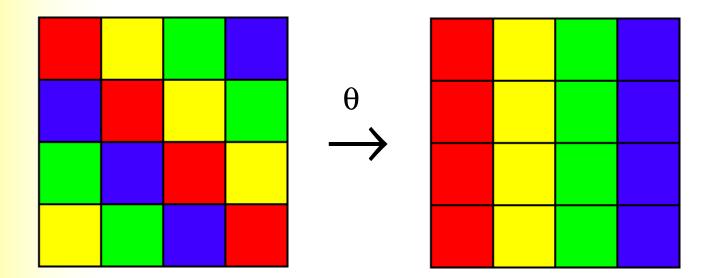
- For each candidate of *L*, try to extend it by one byte (computing both differences to check).
- Keep extending candidates in ⊥ until they are n-bytes long. At this stage, only the right key is remaining.

Faults Occurring at a Wrong Location

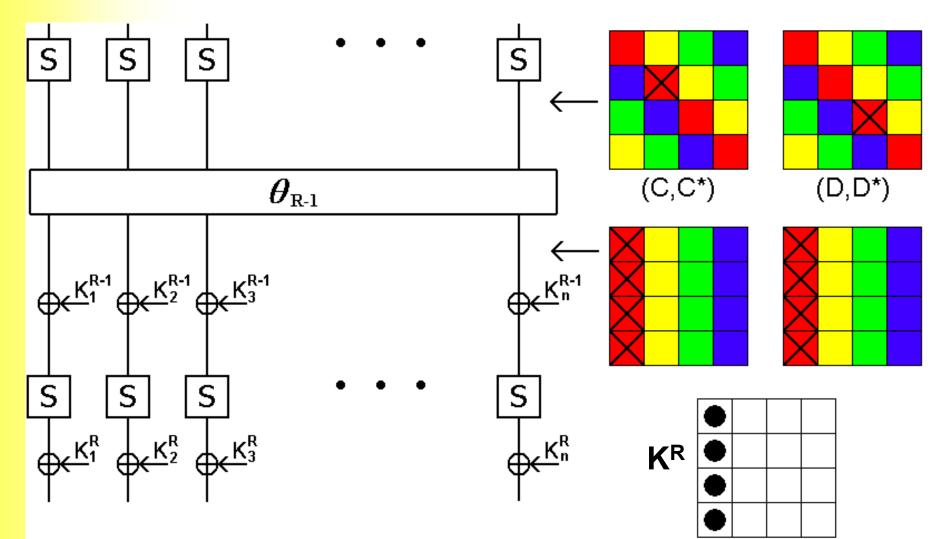
- Usually the attacker has no control on the fault location.
- Problem: To distinguish pairs (*C*,*C**) resulting from a fault occuring between θ_{R-2} and θ_{R-1} [*right pairs*] from other pairs [*wrong pairs*].
- If the diffusion layer θ_{R-1} is not optimal: Trivial.
- If θ_{R-1} is optimal, it is not possible to decide whether a single pair (C,C*) is a *right pair* or not.

Faults Occurring at a Wrong Location

- However if :
 - (C,C*) is a right pair.
 - (D,D*) is a wrong pair.

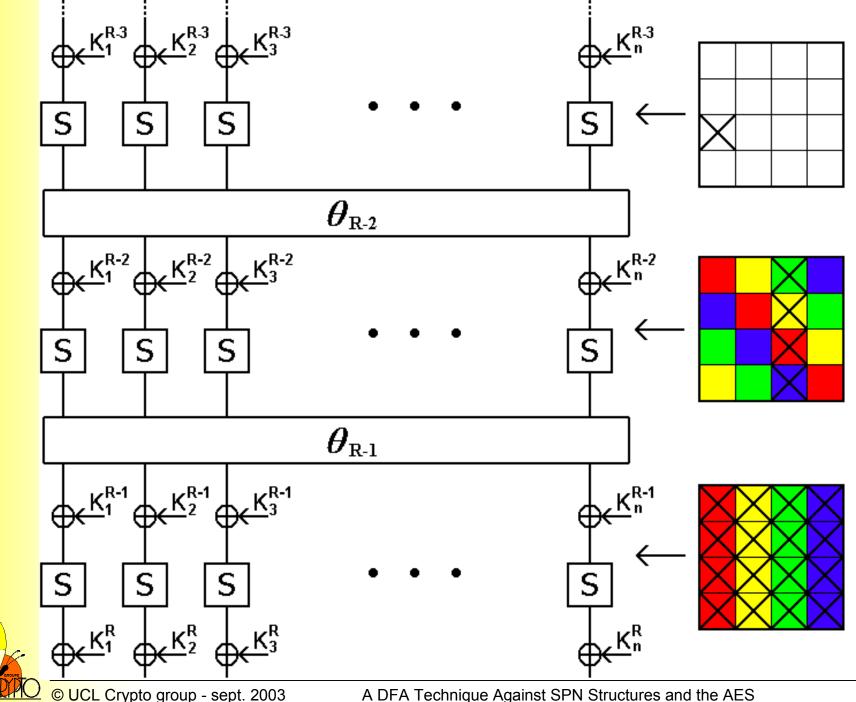

Then applying the attack to these pairs \rightarrow no solution for K^R.

- Thus wrong pairs can be distinguished, by considering *pairs* of pairs (C,C*).
- Suppose 1 pair (C,C*) out of 50 is right.
 → ~10000 (100*100) pairs ((C,C*);(D,D*)) need to be examined in order to find K^R. →Feasible!


The AES-128

- 128-bit block, 128-bit key variant. 10 rounds SP Network.
- Knowledge of K^R is enough to retrieve the master key.
- Non-optimal linear diffusion layer: Composition of 2 transformations, ShiftRow and Mixcolumn.

Basic Attack


Basic Attack

- If the fault location can be chosen very precisely: 8=4*2 pairs (C,C*) are needed to retrieve K^R.
 (but in fact, 6 pairs are enough)
- If we cannot choose the byte where the fault occurs: ~15 pairs are needed.

An Improved Attack

• It is possible to do better if we deal with faults occuring between θ_{R-3} and θ_{R-2} (instead of between θ_{R-2} and θ_{R-1}).

Implementation on a PC

- Using 2 right pairs (C,C*), with fault occurring between θ_{R-3} and θ_{R-2}:
 - \rightarrow Takes a few seconds.
 - → Unique candidate retrieved in 77% of the cases.
 - \rightarrow Number of candidates never exceeds 16.
- Applying the attack to 2 pairs one of which is wrong (i.e. corresponds to a fault occuring before θ_{R-3}), the obtained set of solutions was always empty.
 - \Rightarrow We can indeed reject wrong pairs !!

Conclusion

- Attack exploits faults on bytes.
- If fault location can be chosen:

→Requires only 2 faulty ciphertexts.

 \rightarrow Takes a few seconds.

If fault location cannot be chosen:

→Requires ~100 faulty ciphertexts
→Completes in a few hours.

- Applicable to other ciphers: Khazad, Noekeon, Serpent,...
- The simple and elegant structure of SPNs makes such an efficient attack possible.

